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Introduction

The XJTAG Development System is an established test suite with a range of software and hardware products
that enable you to debug, test and program electronic circuits quickly and easily. The system works with
devices that conform to the IEEE 1149.1 and 1149.6 JTAG standards.

The original JTAG standard (1149.1) was conceived to allow testing of the interconnectivity of components on
a printed circuit board. However, this interface is commonly used as an embedded processor debug interface
and also for programming of programmable logic devices (PLDs). Advances in silicon design with increasing
device densities and, in particular, the introduction of ball grid array (BGA) and chip scale packaged (CSP)
devices has once again brought the use of JTAG for testing interconnectivity on printed circuit boards to the
fore. Along with this has come the need, both in development and production, for the programming of non-
volatile memories (NVMs). JTAG is a serial interface which means that the ‘traditional’ method of
programming NVMs using JTAG tends to be rather slow. This has led to the development of more creative
programming methods. This paper outlines the different programming methods available in the XJTAG
Development System and shows how JTAG programming of even large NVMs can be a viable proposition in
both the development and production environment.

The JTAG Standard

The JTAG standard requires that a JTAG cell be placed between the external pin and the internal logic of a device.
The JTAG interface can then set and retrieve the values of pins without direct physical access. As well as the cells
connected to the external pins there are also control cells which select whether the pin is inputting or outputting.
Often there are separate cells for input and output, so a single pin often has 3 JTAG cells associated with it.

The JTAG interface requires four dedicated pins on each device, one to take data onto the device (TDI), one
to take data off the device (TDO), one to control what is to be done with the data (TMS) and one clock signal
to synchronise the process (TCK). Data is clocked serially around the JTAG chain until a new value for each of
the cells has been received at which time it is applied to the pins. At the same time, data read from each cell
is shifted out and returned to the user (see Figure 1).
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If a circuit contains more than one device that supports JTAG, they can be linked together to form a 'JTAG
chain'. In a JTAG chain the data output from the first device becomes the data input to the second device;
the control and clock signals are common to all devices in the chain. Figure 2 provides a representation of a
simple JTAG chain containing three devices.

Traditional JTAG NVM Programming

In the traditional method of programming NVMs, first the pins which connect to the address bus, data bus
and control lines of the device to be programmed are identified and then serial data is shifted through the
JTAG chain to access these pins.

As an example, if we are trying to program a flash device which is attached to a processor, the normal
address and data bus of the processor would be used. A typical processor may have more than 300 cells in
its JTAG chain. A write cycle would involve one scan which sets up the address and data along with the write
enable and chip select lines. The write cycle is completed by issuing a second scan which removes the write
enable and chip select. Similarly, a read cycle involves a scan which sets up the address and chip select and
then a second cycle which actually reads the data. A maximum TCK frequency of 10MHz is not unusual and
from this it can be seen that a single write (or read) cycle will take at least 60 µs.

Assuming a read cycle of 60 µs, it can be seen that simply reading every location in a 16 bit wide, 128MBit
flash will take more than 8 minutes. When writing there are usually additional sequences to be written and
status flags to be polled which means that in reality the time taken to program a flash device using the
traditional method can require much longer. Even in a development environment this can be inconvenient but
in a production environment this would be unacceptable so a different technique is required.

Processor Based Programming

Most embedded processors have direct access to the NVMs and, as mentioned earlier, the JTAG interface is
now commonly used for embedded processor debug so we can leverage this situation to improve NVM
programming speed (see Figure 3). XJTAG supplies modules which allow access to the debug port of a
processor. These modules can be used to improve NVM programming performance as well as increasing test
coverage.
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Most processor debug interfaces have a relatively efficient mechanism for reading and writing memory. For
example, the ARM Cortex M3 processors include a ‘Memory Access Port’ which includes an auto-
incrementing address register. Once the address register has been configured, reading or writing the data
register results in a read or write of the memory. Once the read or write has completed, the address is
automatically incremented and the next location can be read or written without having to set up the address.
The JTAG chain in this case is reduced to just 35 bits long. Using the same 10MHz TCK frequency as above,
a single write cycle will take 3.5 µs. Therefore, reading the same 16 bit wide, 128MBit flash as above will take
less than 30 seconds. Of course, if the flash interface is 32 bits wide, this comes down to nearer 15 seconds.

Writing to the flash is a bit more problematic since status flags have to be polled to check for write completion
which means it is not possible to use the auto-incrementing facility. This is solved by using the internal RAM of
the processor to download a small program that will program the flash from a buffer which is held also in
RAM. The data to be programmed is then written, via JTAG, to the RAM buffer (using the auto-incrementing
facility) and then the ARM code is called to write the buffer to flash. The writing to flash can usually run at the
full programming speed of the flash so the only additional overhead is the writing of the data to the RAM
buffer. This can be done 32 bits at a time and therefore can meet the same timings as for reading the flash.
Since the processor is programming the flash at maximum speed, the only extra delay will be the time taken
to download the data which means the extra overhead is around 15 seconds. Of course, the processor may
not have sufficient RAM to buffer the entire flash image so there may be additional overheads involved in
splitting the data into smaller buffers but the overall gain is significant.

These improvements in programming speed are considerable and will certainly be acceptable in development
and may be acceptable in production. However, not all processors can be operated in this way so yet another
alternative method may also be required.

It should be noted that in the real world, many factors conspire to mean that the programming speed does
not match the theoretical maximum; one of the major factors is additional devices in the JTAG chain.
According to the JTAG specifications, these other devices must implement a ‘BYPASS’ instruction which
means they occupy a single bit in the JTAG chain. Unfortunately, devices in BYPASS then operate normally
which can interfere with the programming process (since they might be accessing the address and data bus).
Some devices might implement a ‘CLAMP’ instruction which holds all the pins in a given state whilst only
occupying a single bit in the JTAG chain. Unfortunately, some devices have to be held in EXTEST which
means all of their JTAG cells are in the chain and have to be maintained in a state which stops them
interfering with the programming. This can significantly increase the programming time.
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PLD Based Programming

Many modern electronic designs include PLDs. If a PLD has full access to the NVM and can also be
programmed to take control of the JTAG chain, the PLD can be used to program the NVM (see Figure 4).
XJTAG provides the ‘XJFlash’ module which uses the onboard PLD to take control of the JTAG chain and
program an attached NVM.

The technique used is similar to the technique used to program the PLD itself. The PLD is programmed to
take control of the JTAG chain. A simple protocol is then operated over the JTAG chain which means the
programming data can be transferred with virtually no overhead at all. The programming data for the 128MBit
example above can be transferred in less than 14 seconds which can occur in parallel to the actual
programming of the flash device. Of course, this data rate is usually too fast for the flash programming speed
and PLDs rarely have enough memory space to buffer an entire flash image. As a result, the image is usually
split into blocks and the protocol includes a mechanism to allow the system to wait for more buffer space to
become available in the PLD before sending the next block.

As mentioned in the processor based example, additional devices in the chain can affect the programming
speed. However, since the PLD based programming method makes much more efficient use of the JTAG
chain data, the affect is greatly reduced.

Practical Example

This example uses the Orion Demo Platform as supplied by Micron (www.micron.com). The board has two
JTAG chains: one has an Intel/Marvell PXA270 processor and the other has a Xilinx Spartan 3 FPGA and a
Xilinx XCF08P PROM. The board also has a PISMO 2 connector which is accessible from the Spartan 3.
For the purposes of this example, a Micron Phase Change Memory (PCM) module was plugged into the
PISMO 2 port (see Figure 5).
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Although it would be possible to just use the single JTAG chain which includes the Spartan 3, the PXA270
can be put into CLAMP mode which only adds one bit to the chain. The PXA270 is also used for connection
integrity checking so it was left in the chain. The PROM can also be put into CLAMP mode so again only
contributes a single bit to the chain.

The Spartan 3 was programmed with XJFlash and a 128MBit file was generated and filled with pseudo
random data. This file was then used to program the PCM module using XJRunner to control access to the
XJFlash high speed programming system.

The PCM module has various modes of operation. Since PCM devices are bit-alterable, there is no need for
an erase operation before programming. However, there is a slight speed advantage if the device is known to
be all 1s when programming.

Using a TCK frequency of 20MHz, the time taken to program the device is as follows:

The theoretical programming times for the device are:

As can be seen from the above, the actual programming figure is faster than the theoretical ‘typical’ figure.
By observing the state of the programming buffers, it was possible to confirm that the buffers, once filled,
were not seen empty again until programming had completed. This shows that the limitation was the PCM
device programming speed and not the JTAG interface.

Bit alterable buffered write 23.59 47.19 Seconds

All ones buffered write 18.61 33.55 Seconds

Bit alterable buffered write 21.0 Seconds

All ones buffered write 13.3 Seconds
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The time taken to verify the programming for the above device was 9 seconds which again is close to the
theoretical minimum time given the TCK frequency.

Conclusion

Whilst programming of NVMs using the traditional method of JTAG programming is certainly possible, the
slow speed makes it only really viable for small images.

NVMs are usually directly attached to a processor which means that, with the help of the processors debug
port, it is possible to greatly speed up the programming of NVMs.

If the NVM’s address bus, data bus and control lines are attached to a suitable PLD, the PLD can be
programmed to program JTAG data straight into the NVM. This technique allows many NVMs to be
programmed in the shortest time possible.

If NVM programming speed over JTAG is an issue, there are alternatives that can greatly improve
programming speed but since they are dependant on the specific application it is best to contact XJTAG
(www.xjtag.com) to identify the best possible solution.
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